. The degree of precision of the follwing quadrature rule is 1:
1
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. The closed Newton—Cotes rule with n points is exact for all polynomials of degree up to n.

. The trapezium approximation is always wrong if f is not a polynomial. That is to say, for all non-
polynomial function f, it holds that
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. The degree of precision of the following quadrature rule is 1:
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. Suppose that f € C*[a,b] and let I,[f] denote the approximate integral of f using the composite
trapezium rule with n integration points. Then it holds that
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. Suppose that f € C*®[a,b] and let I,,[f] denote the approximate integral of f using the composite
trapezium rule with n integration points. Then there exists C such that

C
Vne{2,3,...}, ‘I[f] - In[f]‘ <.
. Suppose that f € C*[a,b] and let I,,[f] denote the approximate integral of f using the composite
trapezium rule with n integration points. Then it holds that
lim 0| 11f] = L[f]| = 0.
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. There exist w; and wy such that the degree of precision of the following rule is 2:
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. In Julia, the following code implements the composite trapezium rule with n + 1 points:

function I_approx(a, b, n)
x = LinRange(a, b, n + 1)
h=(d-a /n
return h*sum(f, x[1:n] .+ h/2)
end

. In Julia, the following code implements the composite Simpson rule with n + 1 points:

function I_approx(n)
x = LinRange(a, b, n + 1)
h=((d-a) /n
result = O.
result += h/3 * £(x[1]) + h/3 * f(x[end])
result += 4h/3 * sum(f, x[2:2:end-1])
result += 2h/3 * sum(f, x[3:2:end-2])
return result

end



