- 1. The only polynomial of any degree such that $p(0) = 0$ and $p(1) = 1$ is the linear polynomial $p(x) = x$.
- 2. Given $x_0 < x_1 < \ldots < x_n \in \mathbb{R}$ and $y_0, y_1, \ldots, y_n \in \mathbb{R}$, which of the following assertions may be false?
	- there exists a polynomial $p \in \mathcal{P}_{n+1}$ such that $p(x_i) = y_i$ for all $i \in \{0, 1, \ldots, n\}$.
	- \circ there exists a unique polynomial $p \in \mathcal{P}_{n+1}$ such that $p(x_i) = y_i$ for all $i \in \{0, 1, ..., n\}$.
	- \circ there exists a polynomial $p \in \mathcal{P}_n$ such that $p(x_i) = y_i$ for all $i \in \{0, 1, \ldots, n\}.$
	- there exists a unique polynomial $p \in \mathcal{P}_n$ such that $p(x_i) = y_i$ for all $i \in \{0, 1, \ldots, n\}$.
- 3. In interpolation, the choice of interpolating points does not affect the accuracy of the interpolation.
- 4. In polynomial interpolation, using Chebyshev nodes can help reduce the interpolation error compared to using equidistant nodes.
- 5. Gregory–Newton interpolation is well-suited for incremental interpolation.
- 6. Suppose that $f: [-1,1] \to \mathbb{R}$ is a smooth function, and for any $n \in \mathbb{N}$, let $f_n \in \mathcal{P}_n$ denote the polynomial interpolating f at $n + 1$ equidistant points $-1 = x_0 < x_1 < \ldots < x_n = 1$. Then

$$
\lim_{n \to \infty} \left(\max_{-1 \le x \le 1} \left| f(x) - f_n(x) \right| \right) = 0.
$$

7. Let $(f_0, f_1, f_2, f_3, ...)$ = $(1, 1, 2, 3, ...)$ denote the Fibonacci sequence. Does there exist a polynomial p such that

$$
\forall n \in \mathbb{N}, \qquad f_n = p(n) ?
$$

Hint: If this is true, then there must be $d \in \mathbb{N}$ such that $(\Delta^d f)_i = 0$ for all i, because application of the difference operator Δ to a polynomial decreases its degree by 1.

- 8. In Julia, if A is a matrix, then A[:, 1] gives the first column of A.
- 9. In Julia, if A is a matrix, then A[:, 2:end] gives the full matrix A.
- 10. What is p in the following code?
	- The interpolating polynomial.
	- \circ The Lagrange polynomial associated with $x = 4$.
	- \circ The Lagrange polynomial associated with $x = 8$.
	- None of the above.

using Plots

```
x = [2, 4, 6, 8, 10]p(z) = \text{prod}((z - x[1:end . != 4]). (x[4] - x[1:end . != 4]))plot(p, xlims=(0, 12))scatter!(x, p)
```