Numerical Analysis: Midterm (40 marks)

Urbain Vaes

November 15, 2024

Question 1 (Floating point arithmetic, **10 marks**). True or false?

- **1.** Let $(\bullet)_2$ denote binary representation. It holds that $(0.1011)_2 + (0.0101)_2 = 1$.
- **2.** Let $(\bullet)_3$ denote base 3 representation. It holds that $(1000)_3 \times (0.002)_3 = 2$.
- **3.** A natural number with binary representation $(b_4b_3b_2b_1b_0)_2$ is even if and only if $b_0 = 0$.
- 4. In Julia, Float64(.4) == Float32(.4) evaluates to true.
- 5. Machine addition $\hat{+}$ is a commutative operation. More precisely, given any two double-precision floating point numbers $x \in \mathbf{F}_{64}$ and $y \in \mathbf{F}_{64}$, it holds that x + y = y + x.
- 6. Let \mathbf{F}_{32} and \mathbf{F}_{64} denote respectively the sets of single and double precision floating point numbers. It holds that $\mathbf{F}_{32} \subset \mathbf{F}_{64}$.
- 7. In Julia, eps(Float16) returns the smallest strictly positive number that can be represented exactly in the Float16 format.
- 8. Let \mathbf{F}_{64} be the set of double precision floating point numbers. For any $x \in \mathbf{R}$ such that $x \in \mathbf{F}_{64}$, it holds that $x + 1 \in \mathbf{F}_{64}$.
- **9.** Let $x \in \mathbf{R}$ and $y \in \mathbf{R}$ be two numbers that are exactly representable in the Float64 format. Then x + y = x + y: machine addition is exact in this case.
- **10.** It holds that $(0.\overline{2200})_3 = (0.9)_{10}$.

C Question 2 (Interpolation and approximation, 10 marks). Are the following assertions true or false? Throughout this exercise, we use the notation $x_i^n = i/n$. The notation $\mathbf{P}(n)$ denotes the set of polynomials of degree less than or equal to n. We proved in class that, for any function $u: \mathbf{R} \to \mathbf{R}$ and for all $n \in \mathbf{N}_{>0}$, there exists a unique polynomial $p_n \in \mathbf{P}(n)$ such that

$$\forall i \in \{0, \dots, n\}, \qquad p_n(x_i^n) = u(x_i^n). \tag{1}$$

- **1.** If u is not the zero function, then the degree of p_n is exactly n.
- **2.** If u(x) = 2x + 1, then $p_n = u$ for all $n \in \{1, 2, 3, ...\}$.
- **3.** Fix $u(x) = 1 + \sin(57\pi x)$. Then $p_3(x) = 1$.
- 4. Fix $u(x) = (2x 1)^3$. Then $p_2(x) = 2x 1$.
- 5. Fix $n \in \mathbb{N}_{>0}$ and suppose that $u: \mathbb{R} \to \mathbb{R}$ is a smooth function. There exists a constant K > 0 independent of x such that

$$\forall x \in \mathbf{R}, \qquad u(x) - p_n(x) = K \prod_{i=0}^n (x - x_i^n)$$

6. It holds that

$$\forall x \in [0,1], \qquad \left| (x - x_0^n) \dots (x - x_n^n) \right| \leq n! \left(\frac{1}{n}\right)^{n+1}$$

7. In Julia, assuming that n and the function u have already been defined, the following code enables to calculate the interpolating polynomial p_n of u:

using Polynomials
Assume `n=5` and `u` have already been defined
x = LinRange(0, 1, n + 1)
p = fit(x, u)

8. Let Δ denote the finite difference operator: for a function $f: \mathbf{R} \to \mathbf{R}$, the function $\Delta f: \mathbf{R} \to \mathbf{R}$ is defined as

$$\Delta f(x) = f(x+1) - f(x).$$

Then $f \in \mathbf{P}(n)$ if and only if $\Delta^{n+1}f = 0$. Here Δ^{n+1} denotes the composition of n+1 applications of the operator Δ .

9. In Julia, the following code enables to fit the data x and y by a straight line.

using Polynomials x = [1, 2, 3, 4] y = [16, 9, 4, 1] p = fit(x, y, 1)

10. Using Chebyshev instead of equidistant points can improve on the quality of the interpolation.

 $\mathbf{a}_{\mathbf{a}}^{\mathbf{a}}$ Question 3 (Numerical integration, 10 marks). The Gauss–Legendre quadrature formula with n nodes is an approximate integration formula of the form

$$I(u) := \int_{-1}^{1} u(x) \, \mathrm{d}x \approx \sum_{i=1}^{n} w_i \, u(x_i) =: \widehat{I}_n(u), \tag{2}$$

which is exact when u is a polynomial of degree less than or equal to 2n - 1. (Note that the nodes are here numbered starting from 1.)

1. (5 marks) Find the nodes and weights of the Gauss–Legendre rule with n = 3 nodes, without using any formula (unless you prove it beforehand).

Hint: Recall that a necessary and sufficient condition in order for (2) to be satisfied for any polynomial $p \in \mathbf{P}(5)$ is that

$$\int_{-1}^{1} x^{d} \, \mathrm{d}x = \sum_{i=1}^{n} w_{i} x_{i}^{d}, \qquad \text{for all } d \in \{0, 1, 2, 3, 4, 5\}.$$

Furthermore, given the symmetry of the problem, it is reasonable to look for a solution of the following form, which enables to reduce the number of unknowns.

$$(x_1, x_2, x_3, w_1, w_2, w_3) = (-x, 0, x, w_1, w_2, w_1).$$

- 2. (5 marks) Are the following assertions true of false :
 - The degree of precision of the composite trapezium rule is 2.
 - The composite Simpson rule can be used to integrate exactly a quadratic polynomial.
 - The degree of precision of the following rule is 1:

```
function my_integrate(f, a, b)
    x = LinRange(a, b, 100)
    h = x[2] - x[1]
    return h * sum(f, x[1:end-1])
end
```

• The degree of precision of the following integration rule is 2:

$$\int_{-1}^{1} f(x) \, \mathrm{d}x \approx 2f(0) + \frac{1}{3}f''(0).$$

Suppose that u: R → R is a smooth function, and let Î_n(u) denote an approximation of the integral I(u) := ∫¹₋₁ u(x) dx by the composite trapezium approximation with n points. Let

$$\widehat{J}_n(u) = 2\widehat{I}_{2n}(u) - \widehat{I}_n(u).$$

It holds that

$$\lim_{n \to \infty} n^2 \left| I(u) - \widehat{J}_n(u) \right| = 0.$$

Time (hours)	Temperature (°C)
6	10.5
9	15.0
12	20.2
15	25.1
18	22.8
21	17.4

Computer exercise 1 (Interpolation, **10 marks**). Consider the following data:

Table 1: Recorded temperatures at different times of the day.

We wish to approximate the temperature as a smooth function of time. To this end, calculate the interpolating polynomial p_{int} , as well as the best quadratic polynomial approximation p_{app} (in the sense that the sum of square errors is minimized). You may use the Polynomials library. Plot on the same graph:

- The data points using scatter;
- The polynomial p_{int} interpolating the data points;
- The quadratic polynomial $p_{\rm app}$ that best approximates the data, in the sense of least squares.

Computer exercise 2 (Numerical integration, **10 marks**). Boole's integration rule reads

$$\int_{-1}^{1} u(x) \, \mathrm{d}x \approx \frac{7}{45}u(-1) + \frac{32}{45}u\left(-\frac{1}{2}\right) + \frac{12}{45}u(0) + \frac{32}{45}u\left(\frac{1}{2}\right) + \frac{7}{45}u(1)$$

• Write a function comp_boole(u, a, b, N), which returns an approximation of the integral

$$I(u) = \int_{a}^{b} u(x) \,\mathrm{d}x$$

obtained by partitioning the integration interval [a, b] into N cells, and applying Boole's rule within each cell.

- Take $u(x) = \cos(x)$, a = -1 and b = 1. Plot the evolution of the error for $N \in \{1, \dots, 200\}$.
- Estimate the order of convergence with respect to N, i.e. find α such that

$$|\widehat{I}_N - I| \propto C N^{-\alpha},$$

where I denotes the exact value of the integral and \widehat{I}_N denotes its approximation by the composite Boole's rule. Use the method you prefer in order to find α . You can, for example, use the function fit from the Polynomials package to find a linear approximation of the form

$$\log|\widehat{I}_N - I| \approx \log(C) - \alpha \log(N).$$